Computation of MHD Parameters in the LFM model

1. Pressure

In ideal MHD model [Gombosi, 1998],

$$\varepsilon = \frac{1}{2}\rho v^2 + \frac{p_{th}}{\gamma - 1} \tag{1}$$

where ε is the sum of flow and thermal energy density,

 ρ is mass density,

v is flow velocity,

 p_{th} is thermal pressure, and

 $\gamma = 5/3$, is the polytropic index.

Eq. (1) can be rearranged as,

$$\frac{2}{3}\varepsilon = \frac{1}{3}\rho v^2 + p_{th}$$

$$= p_{dyn} + p_{th}$$
(2)

where p_{dyn} = dynamic pressure = $\frac{1}{3}\rho v^2$

 p_{th} = thermal pressure = nkT

2. Mean Energy

Mean energy, \overline{E} , is given by,

$$\overline{E} = \frac{\varepsilon}{n} \tag{3}$$

where n is number density. Combining Eqs. (2) and (3), \overline{E} can be obtained by,

$$\overline{E} = \frac{3}{2} \frac{p_T}{n} \tag{4}$$

where $p_T = p_{dyn} + p_{th}$ is the total pressure.

Reference:

Gombosi, T. I, Physics of the Space Environment, Cambridge, New York, 1998